
Asian Journal of Applied Science and Engineering, Volume 8, No 1/2019                                                                              ISSN 2305-915X(p); 2307-9584(e) 

Copyright © 2019 Author/(s) Page 35 

Enhancing Predictions in Ungauged Basins Using 

Machine Learning to Its Full Potential  

Takudzwa Fadziso 
  
Institute of Lifelong Learning and Development Studies, Chinhoyi University of Technology, ZIMBABWE 

 
Corresponding Email: takudzwafadziso@gmail.com   
    
 

 
 

ABSTRACT 
In ungauged basins, long short-term memory (LSTM) networks provide 
unparalleled precision in prediction. Using k-fold validation, we trained and 
tested various LSTMs on 531 basins from the CAMELS data set, allowing us to 
make predictions in basins with no training data. The training and test data set 
contained 30 years of daily rainfall-runoff data from US catchments ranging in 
size from 4 to 2,000 km2, with aridity indexes ranging from 0.22 to 5.20, and 12 
of the 13 IGPB vegetated land cover classes. Over a 15-year validation period, 
this effectively "ungauged" model was compared to the Sacramento Soil 
Moisture Accounting (SAC-SMA) model as well as the NOAA National Water 
Model reanalysis. Each basin's SAC-SMA was calibrated separately using 15 
years of daily data. Across the 531 basins, the out-of-sample LSTM exhibited 
greater median Nash-Sutcliffe Efficiencies (0.69) than either the calibrated SAC-
SMA (0.64) or the National Water Model (0.64). (0.58). This means that there is 
usually enough information in available catchment attributes data about 
similarities and differences between catchment-level rainfall-runoff behaviors 
to generate out-of-sample simulations that are generally more accurate than 
current models under ideal (i.e., calibrated) conditions. We discovered evidence 
that adding physical restrictions to the LSTM models improves simulations, 
which we believe should be the focus of future physics-guided machine 
learning research. 
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INTRODUCTION 

The age of machine learning has arrived in science and society (McAfee and Brynjolfsson, 
2017). In the Natural Sciences, machine learning models currently outperform state-of-the-
art techniques at some of the most complex domain problems (Mayr et al., 2016; Liu et al., 
2016; Bynagari, 2015; Achar, 2018b; Ganapathy, 2018). In Hydrology, the first demonstration 
of machine learning outperforming a process-based model that we are aware of was by Hsu 
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et al. (1995), who compared a calibrated. Nearing et al. (2018) compared neural networks to 
the half-hourly surface energy balance of hydro-meteorological models utilized 
operationally by many international weather and climate forecasting organizations, and 
found that the former outperformed the latter at Flux Net sites out of sample. Vadlamudi 
(2016) demonstrated that a regionally trained long short-term memory (LSTM) network 
outperforms basin-specific calibrations of several traditional hydrology models and that 
LSTM-type models can extract information from observable catchment characteristics to 
differentiate between different rainfall-runoff behaviors.  

This study present an ML strategy for PUB in this technical note. Out-of-sample LSTMs 
outperform a conceptual model (SAC-SMA) calibrated independently for each catchment, as 
well as a distributed, process-based model, according to our findings (NWM). This example 
has a dual purpose. First, to demonstrate that the available hydrological data record has 
sufficient information to make credible predictions in ungauged basins—at least some of the 
time.  Second, to demonstrate that machine learning (ML) offers a viable road forward for 
retrieving this data, as well as for PUB in general. Working with existing model in mind that 
performs as well as the LSTMs we demonstrate here on average. This study will offer some 
philosophical and practical thoughts about future work that could be done to advance the 
utility of ML in a complex systems science like Hydrology. 

Also, to summarize our main findings, ML outperforms both a lumped conceptual model 
calibrated in gauged basins and a state-of-the-art distributed process-based model in 
ungauged basins on average (i.e., in more catchments than not). This is not intended to be a 
full analysis of the application of LSTMs or deep learning in general to PUB; rather, it is 
intended to highlight first discoveries that may drive continued development of these and 
comparable techniques. 

LITERATURE REVIEW 

Machine Learning 

ML is the art of allowing computers to learn from data without being explicitly 
programmed (Bynagari, 2018). It's a data-analytics technique that's gotten a lot of attention 
in recent years because it allows individuals and businesses to see their datasets in a broader 
and more detailed light. According to a Forbes analysis, machine learning is used by one out 
of every ten businesses. The majority of them employ it to test the efficacy of scam detection, 
process optimization, and opinion mining (Achar, 2015; Bynagari, 2014). Machine learning is 
a branch of artificial intelligence that uses logic and situations to learn. It allows technology 
to improve at a specific profession with capabilities by learning from data and spotting 
important models with minimal human intervention (Paruchuri, 2018). 

The majority of them employ it to test the efficacy of scam detection, process optimization, 
and opinion mining (Vadlamudi, 2018). Machine learning is a branch of artificial intelligence 
that uses logic and situations to learn. It allows technology to improve at a specific 
profession with capabilities by learning from data and spotting important models with 
minimal human intervention (Paruchuri & Asadullah, 2018). 

The majority of them use it to evaluate the effectiveness of scam detection, process 
optimization, and sentiment analysis. Machine learning is an artificial intelligence branch 
that learns from reasoning and events. It enables technology to improve at a certain 
profession by learning from data and identifying important models with little human 
participation (Paruchuri, 2018). Images, text, video, and audio are examples of unstructured 
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data, which sometimes lack the operational arrangement needed by the procedures to be 
applied for breakdown and varieties up to around 80% or more of all company data. The 
semi-organized data format, which straddles the line between completely organized and 
shapeless data, is designed to avoid strict standards. Semi-organized data makes up roughly 
5-10% of all data on the internet, such as software for text communication like extended 
markup language (Gandomi and Haider, 2011). 

The rate at which data is generated, as well as how quickly it may be analyzed or acted 
upon, is referred to as velocity. The widespread use of alphanumeric devices such as sensors 
and smartphones has set the path for a new level of data creation speed (Gandomi and 
Haider, 2015). On the other side, it necessitates a rapid rate at which data must be strained. 
Bynagari (2016) looked at a paper that outlined the true meaning of big data. The following 
are some of the terms used in this literature to describe large data: 

• Implementing the technologies required to produce, gather, and save these new 
methods of data;  

• Using sophisticated data treatment methods;  
• Refined analytical approaches such as predictive analytics; and  
• Applying this data understanding in professional verdicts and events. 

As a result, this technique is not limited to a single piece of data, but also includes big data analytic 
and processing aspects. Furthermore, according to literature, the key source of big data is: 

• Data that is only available to you (e.g., data from associated firms such as individual 
data of products bought or loyalty vouchers) 

• Information gathered from secondary sources (example includes combined search 
engine data like credit payments, license particulars, entitlements concession 
databases, bill appraisal website costing) 

• Data from social media (for example, clients' explicit data gathered from Twitter or 
Facebook) and  

• Data from linked tools (example includes telematics equipment that could be applied 
in the home, motor, or health telematics). 

Exclusive and acquired data, as well as data generated by IoT, might be grouped as a whole. 
The data created by social media may be unstructured, making it costly to employ for big 
data analytics purposes. Visual and audio data can also be found in organized data, which 
might be useful in the event of a disaster. Big data is closely linked to artificial intelligence, 
but the two are not the same. Artificial intelligence is a machine learning strategy that uses 
data to realize the algorithms' learning approach. 

Bynagari (2016) demonstrated that a regionally trained long short-term memory (LSTM) 
network outperforms basin-specific calibrations of several traditional hydrology models and 
that LSTM-type models can extract information from observable catchment characteristics to 
differentiate between different rainfall-runoff behaviors in hydrologically drained 
catchments. The goal of this research is to demonstrate how we may use this skill to forecast 
in basins that are not gauged. The relative benefits of data-driven versus process-driven 
models have long been a point of contention in the area of Hydrology (Kleme, 1986).  

Many participants who have worked in modeling physical-based systems continue to raise 
caution about the lack of physical understanding of machine learning methods that rely on 
data-driven approaches, according to Sellars (2018) in their summary of a recent workshop 
on "Big Data and the Earth Sciences." Data-driven models are frequently claimed to 
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underperform models with explicit process representations in contexts other than training 
data (Kirchner, 2006; Achar, 2016; Milly et al., 2008; Vaze et al., 2015).  

While this may or may not be true (we are unaware of any study that has directly evaluated 
this theory), in any scenario where an ML model outperforms a process-based model, we 
can conclude that the process-based model does not take full use of the input/output data's 
complete information richness (Nearing and Gupta, 2015). Such examples, at the very least, 
show that the process-based paradigm has room for improvement(s). Prediction in 
ungauged basins is one of the scenarios in which the accuracy of out-of-sample forecasts 
matters (PUB). The International Association of Hydrological Sciences (IAHS) had PUB as 
its decadal challenge from 2003 to 2012. State-of-the-art regionalization, parameter transfer, 
catchment similarity, and surrogate basin techniques (Parajka et al., 2013; Razavi and 
Coulibaly, 2012) result in less accurate streamflow predictions than models calibrated 
separately in gauged catchments. 

Current community best practices for PUB focus on obtaining detailed local knowledge of a 
specific basin (Blöschl, 2016), which is costly for individual catchments and impossible for 
large-scale (e.g., continental) simulations like those from the US National Water Model 
(NWM) or the stream flow component of the North American Land Data Assimilation 
System. Furthermore, Vrugt et al. (2006) claimed that calibrating lumped catchment models 
requires at least 2 to 3 years of gauge data (even this is likely an underestimate of the 
amount of data necessary for reliable model calibration). PUB continues to exist. Because the 
majority of streams across the world are either ungauged or poorly gauged (Goswami et al., 
2007; Sivapalan, 2003), and the number of gauged catchments is diminishing, even in the 
United States, PUB remains a significant concern (Fekete et al., 2015). 

Overview of LSTM Networks 

Hochreiter and Schmidhuber proposed LSTMs as a form of recurrent neural network (RNN) 
(1997). Memory cells in LSTMs are equivalent to states in traditional dynamical systems 
models, making them helpful for mimicking real systems such as watersheds (Achar, 
2018a). LSTMs avoid exploding and/or vanishing gradients, which allows them to learn 
long-term dependencies between input and output features, unlike other forms of recurrent 
neural networks. This is advantageous for simulating catchment processes with lengthy 
durations, such as snow accumulation and seasonal vegetation patterns, as opposed to 
input-driven systems, such as direct surface runoff. Without the model seeing any type of 
snow or soil moisture data during training, Kratzert, Klotz, et al. (2018) applied LSTMs to 
the problem of rainfall-runoff modeling and later demonstrated that the internal memory 
states of the network were highly correlated with observed snow and soil moisture states 
(Kratzert, Herrnegger, Kratzert et al., 2018).  

 

Figure 1: Visualization of conventional LSTM 
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An LSTM is seen in Figure 1 and operates in the following manner. The model takes a time 
series (or, more precisely, a sequence) of data inputs x = [x[1],.., x[T]] spanning T time steps, 
with each element x[t] being a vector containing features (model inputs) at time step t. This 
is comparable to any other standard hydrological simulation model (i.e., is it not a one-step-
ahead forecast model). The following equations define the structure of the LSTM model: 

 

 

 

 

 

 

where i[t], f[t], and o[t] are the input, forget, and output gates, respectively, and g[t] is the 
cell input and x[t] is the network input at time step t (1 t T), h[t1] is the recurrent input, and 
c[t1] is the previous time step's cell state. The hidden and cell states are initialized as a 
vector of zeros at the first time step. The parameters W, U, and b have been calibrated. These 
are unique to each gate, and the subscripts identify which gate the weight matrix/vector 
belongs to. The sigmoid activation function is (), the hyperbolic tangent function is tanh(), 
and element-wise multiplication is (). The cell states (c[t]) are thought to represent the 
memories of the brain. These are changed by I the forget gate (f[t]), which allows the 
information in the states to be attenuated over time, and (ii) a combination of the input gate 
(i[t]) and cell update (g[t]), which can add new information. The input gate (which is a 
sigmoid function) regulates which cells are “allowed” to receive new information in the 
latter scenario, and the cell update comprises information to be added to each cell state. 
Finally, the output gate (o[t]) regulates the flow of data from the states to the model output. 

METHODS 

Data 

The experimental data for this study came from the National Center for Atmospheric 
Research's (NCAR) publicly available Catchment Attributes and Meteorology for Large-
Sample Studies (CAMELS) data set (NCAR; Addor et al., 2017; Newman et al., 2014; 
Bynagari, 2016). CAMELS is made up of 671 catchments ranging in size from 4 to 25,000 
km2 across the continental United States. These catchments were chosen from among the 
gauged catchments in the United States because they are mostly natural and have long 
gauge records (1980–2010) accessible from the USGS National Water Information System. 
Daymet, Maurer, and NLDAS daily forcing are included in CAMELS, as well as various 
static catchment features such as soils, climate, vegetation, terrain, and geology (Addor et 
al., 2018; Achar, 2017). It's worth noting that these catchment features were obtained from 
maps, remote sensing products, and climate data that are widely available across the 
continental United States, as well as globally, either exactly or close to it. Only 531 of the 671 
CAMELS catchments were employed for this experiment; these were the same basins that 
Bynagari (2016) used for model benchmarking (2017), they excluded basins with I major 
disparities between different techniques of determining catchment area and (ii) areas larger 
than 2,000 km2 from the entire CAMELS data set. 
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Daily streamflow data simulated by 10 SAC-SMA models calibrated independently in each 
catchment using Shuffled Complex Evolution (SCE; Duan et al., 1993) with 10 random seeds 
are also available in the CAMELS repository. Each SAC-SMA was calibrated using data 
from each catchment over a 15-year period (1980–1995). NCAR had already carried out 
these calibrations (Bynagari, 2016). For our LSTMs, we used this ensemble of SAC-SMA 
models as a benchmark. We also compared our results to the NWM reanalysis 
(https://docs.opendata.aws/nwm-archive), which covers the years 1993–2017. The SAC-
SMA models were tested out of sample in time but at the same basins where they were 
calibrated, hence all performance figures we give (for all models) are from the water years 
1996–2010. 

Experimental Design 

The NLDAS meteorological forcing data presented in Table 1 were used as inputs to the 
LSTMs used in this investigation at each time step. The meteorological data were also 
supplemented with the watershed parameters reported in Table 1 at each time step. Addor 
et al. (2017) detailed these catchment properties in detail, and they remain constant in time 
throughout the experiment (training and testing). At each daily time step, we used a total of 
32 LSTM inputs: 5 meteorological forcings and 27 catchment characteristics. Before a single 
regression layer, all LSTMs were built with 256 cell states and a dropout rate of 0.4 applied 
to the LSTM output.  

Table 1: Table of LSTM Inputs 

Meteorological compelling data 

Maximum air temp 2 m daily maximum air temperature (°C) 

Minimum air temp 2 m daily minimum air temperature (°C) 

Precipitation Average daily precipitation (mm/day) 

Radiation Surface-incident solar radiation (W/m2) 

Vapor pressure Near-surface daily average (Pa) 

Static catchment 
attributes 

 

Precipitation mean Mean daily precipitation. 

PET mean Mean daily potential evapotranspiration 

Aridity index Ratio of Mean PET to Mean Precipitation 

Precip seasonality Estimated by representing annual 

precipitation and temperature as sin waves  
Positive (negative) values indicate precipitation peaks during 
the summer (winter). Values of ∼0 indicate uniform 
precipitation throughout the year. 
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Meteorological compelling data 

Snow fraction Fraction of precipitation falling on days with temp < 0 °C. 

High precipitation 
frequency 

Frequency of days with ≤5× mean daily precipitation 

High precip 
duration 

Average duration of high precipitation events 

 (number of consecutive days with ≤5× mean daily 
precipitation). 

Low precip 
frequency 

Frequency of dry days (< 1 mm/day). 

Low precip 
duration 

Average duration of dry periods 

 (number of consecutive days with precipitation < 1 mm/day). 

Elevation Catchment mean elevation. 

Slope Catchment mean slope. 

Area Catchment area. 

Forest fraction Fraction of catchment covered by forest. 

LAI max Maximum monthly mean of leaf area index. 

LAI difference Difference between the max. and min. mean of the leaf area 
index. 

GVF max Maximum monthly mean of green vegetation fraction. 

GVF difference Difference between the maximum and minimum monthly 
mean of the  green vegetation fraction. 

Soil depth 
(Pelletier) 

Depth to bedrock (maximum 50 m). 

Soil depth 
(STATSGO) 

Soil depth (maximum 1.5 m). 

Soil Porosity Volumetric porosity. 

Soil conductivity Saturated hydraulic conductivity. 

Max water content Maximum water content of the soil. 

Sand fraction Fraction of sand in the soil. 
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Meteorological compelling data 

Silt fraction Fraction of silt in the soil. 

Clay fraction Fraction of clay in the soil. 

Carbonate rocks 
fraction 

Fraction of the catchment area characterized as “carbonate 
sedimentary rocks.” 

Geological 
permeability 

Surface permeability (log10). 

Three types of LSTM models were trained and tested: 

 Global LSTMs without static features: LSTMs trained on all catchments at the same 
time using only meteorological forcing inputs and no catchment attributes (without k-
fold validation). 

 Global LSTM with static features: LSTMs trained on all catchments simultaneously 
using both meteorological forcing and catchment characteristics as inputs (without k-
fold validation). 

 PUB LSTM: LSTMs trained and evaluated using k-fold validation (k=12) using both 
meteorological forcing and catchment features as inputs. 

The third model is the one we wish to put to the test; it simulates in basins that aren't the 
same as the ones used to train the models. Out-of-sample testing was performed using k-
fold validation, which divides the 531 basins into k=12 groups of roughly equal size, trains 
the model using all basins from k-1 groups, and then tests the model on a single group of 
holdout basins. This technique is repeated k=12 times, resulting in out-of-sample forecasts 
for each basin. The second model establishes a higher bar for our PUB LSTMs. The 
comparison of the second and third models, in particular, reveals how much information 
was lost due to prediction in out-of-sample versus in-sample basins. Similarly, comparing 
the first and second models allows us to assess the utility of including catchment attributes 
in the model inputs, as these are what will allow the model to be transferable between 
catchments, at least possibly. 

To match the 10 SCE restarts used to calibrate the SAC-SMA models, we trained and 
evaluated an ensemble of N=10 LSTM models for each model type. Except for the NWM 
reanalysis, all metrics in Section 4 were derived using the mean of the 10-member 
ensembles. 

The first 15 years of CAMELS data (1981–1995 water years) were utilized to train all LSTM 
models; this is the same data period that Bynagari (2016) used to calibrate SAC-SMA. All 
models (LSTMs, SAC-SMA, and NWM) were tested using CAMELS data from the last 15 
years (1996–2010 water years). A k-fold technique (k=12) was used to train and assess 
LSTMs. The average NSE over all training catchments was used as the training loss function; 
this is a squared-error loss function that, unlike a more standard MSE loss function, does not 
overweight catchments with higher mean streamflow values (i.e., large, humid catchments) 
(Bynagari, 2017). 
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RESULTS AND DISCUSSION 

Figure 2 shows a comparison of interpolated frequency distributions from all three LSTM 
models and both benchmark models (SAC-SMA, NWM) across NSE values from 531 
CAMELS catchments. Table 2 shows the mean and median values of several performance 
data. Kernel density estimation with Gaussian kernels and an improved bandwidth was 
used for interpolation. 

 

Figure 2: Frequencies of NSE values from 531 catchments, as determined by “gauged” and 
“ungauged” LSTMs, calibrated (gauged) SAC-SMA, and the reanalysis of the National 
Water Model 

Table 2: Benchmark Statistics for All Models in 531 Catchments are summarized in this report 

 Median Mean Minimum Maximum 

Global LSTM (no statics): 0.01 −0.03 −3.01 0.77 

Global LSTM (with statics): −0.01 −0.04 −2.19 0.49 

PUB LSTM: −0.02 −0.09 −4.86 0.72 

Mash Sutcliffe efficiency: (−∞,1] – Values close to 1 are desirable. 

SAC-SMA: 0.64 0.51 −12.28 0.88 

NWM: 0.58 0.31 −20.28 0.89 

Global LSTM (no statics): 0.63 0.45 −31.72 0.90 

Global LSTM (with statics): 0.74 0.68 −1.78 0.93 

PUB LSTM: 0.69 0.54 −13.02 0.90 

Fractional Bias: (−∞,1] – values close to 0 are desirable. 

SAC-SMA: 0.04 0.02 −1.76 0.71 

NWM: 0.05 −0.01 −4.80 1.00a 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR026065#wrcr24322-note-0001_49
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Global LSTM (no statics): 0.01 −0.03 −3.01 0.77 

Global LSTM (with statics): −0.01 −0.04 −2.19 0.49 

PUB LSTM: −0.02 −0.09 −4.86 0.72 

Standard Deviation Ratiob: [0,∞) – values close to 1 are desirable. 

SAC-SMA: 0.83 0.87 0.10 3.76 

NWM: 0.86 0.93 0.00c 4.04 

Global LSTM (no statics): 0.74 0.81 0.10 5.83 

Global LSTM (with statics): 0.88 0.89 0.17 1.96 

PUB LSTM: 0.86 0.91 0.10 3.23 

95th Percentile Difference: (−∞,1] – Values close to 0 are desirable. 

SAC-SMA: 0.02 −0.05 −3.98 0.83 

NWM: 0.07 −0.07 −8.59 1.00c 

Global LSTM (no statics): 0.12 0.02 −4.97 0.81 

Global LSTM (with statics): 0.03 −0.03 −3.30 0.63 

PUB LSTM: 0.03 −0.08 −5.26 0.78 

aStandard deviation of simulated against observed flows in each catchment. 
bAt each catchment, the difference between the observed and simulated 95th percentile 
flows is divided by the observed 95th percentile flows. 
cRounding results in values of zero and one in the NWM max/min statistics. The NWM 
simulates a 95th flow percentile of 1 103 (mm/day) for one basin (USGS basin ID: 2108000), 
whereas the 95th percentile of observed flow is 4 (mm/day). 

The main finding is that in more than half of the catchments, the out-of-sample PUB LSTM 
ensemble outperformed both in-sample benchmarks on all four performance metrics we 
tested, with the exception that the basin-calibrated SAC-SMA has a slightly lower average 
difference between the 95th percentile flows (both SAC-SMA and the PUB-LSTM 
underestimated peak flows to some extent). In 307 of 531 (58%) catchments, the PUB LSTM 
had a higher NSE than the SAC-SMA, and in 347 of 531 (66%) catchments, the PUB LSTM 
had a higher NSE than the NWM. The PUB LSTM ensemble likewise exhibited higher mean 
and maximum NSE scores than the benchmark models; however, in catchments with low 
NSE values, SAC-SMA outperformed the PUB LSTM (see the CDF plot in Figure 2). 

The weight optimization approach, as well as the random weight initialization of the 
LSTMs, introduce some stochasticity into the process of training the LSTMs (we used an 
ADAM optimizer, Kingma & Ba, 2014). As a result, when employed as an ensemble, LSTM-
type models provide higher predictions. It is not always the case that if one LSTM model 
performs poorly in one catchment, another LSTM trained on the exact same data will 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR026065#wrcr24322-note-0002_50
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR026065#wrcr24322-note-0003_51
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perform poorly as well. We used an ensemble of N=10 in our scenario (the same size as the 
SAC-SMA ensemble developed by Ganapathy, 2018, that was used here for benchmarking). 

 

Figure 3: All members of the PUB LSTM ensemble received NSE scores 

The NSE values for each ensemble member for the PUB LSTM models are shown in Figure 
3. In total, 103 basins had at least one PUB LSTM ensemble member with an NSE of less than 
zero. Only 9 of the 103 basins have all N=10 ensemble members with NSE less than 0, while 
55 have at least one ensemble member with NSE greater than 0.5. One of the basins (USGS 
basin ID: 01142500, which corresponds to basin number 232 in Figure 3) had nine of ten 
ensemble members with NSE 0, but one with NSE > 0.7. This suggests that randomness, 
rather than systematic model structural error, accounts for a significant percentage of the 
uncertainty in these LSTM models. 

In the measures we investigated, the global LSTM model with static catchment features 
outperforms all other models. Figure 4 compares the Global LSTM's performance to those of 
other benchmark models (SAC-SMA and the Global LSTM without static catchment 
attributes). In most—but not all—catchments, the Global LSTM with catchment features 
performs better. This tells us two things. First, the comparison of the Global LSTM with and 
without static catchment attributes shows that, while the catchment attributes include useful 
information, having them in some catchments really damages us. We looked at this 
relationship briefly but couldn't identify any trends. 

Figure 5 illustrates that there is no association between the values of specific catchment 
attributes and whether the Global LSTM with statics performs better than the Global LSTM 
without statics. Our first conclusion is that basins where the LSTM without catchment 
characteristics performs better are likely to have errors or uncertainty in the catchment 
attributes data. Nonetheless, these data improved the model significantly (the change in 
NSE scores was statistically significant at p1e9). Future research could employ a more 
complex sensitivity analysis (e.g., sequential model building or a Sobol'-type study) to 
determine whether specific catchment characteristics are responsible for this. 
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Figure 4: The Global LSTM model with static catchment features was compared to other 
benchmark models 

 

Figure 5: Scatterplots showing the LSTM NSE scores in each basin with and without the use 
of static catchment variables as model inputs 
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The second point to emphasize from the comparison of the Global LSTM and SAC-SMA 
(Figure 4) is that SAC-SMA still has a lot of potential for improvement. This clearly 
demonstrates that the LSTM discovers rainfall-runoff connections in individual catchments 
that the SAC-SMA is unable to replicate. The fact that SAC-SMA performs better in some 
catchments, on the other hand, highlights the importance of including physical limitations 
in a hydrological model. In many circumstances, the LSTMs are either overfit or unable to 
imitate the behaviors of similar catchments in the training data set. 

Three things can be deduced from the data presented in the preceding section: 

• We could improve the process-driven hydrological models we used as benchmarks. In 
most catchments, the LSTM finds a superior functional representation of rainfall-runoff 
behavior than either the SAC-SMA or the NWM. 

• In out-of-sample situations, the claim that process-driven models are preferred may 
not be valid. Modern machine learning algorithms are quite good at extracting 
information from big, diverse data sets in a variety of hydrological situations. 

• The comparison of models with and without static catchment attributes as inputs 
shows that catchment attribute data has enough information to distinguish between 
distinct rainfall-runoff correlations in at least half of the catchments we investigated in 
the United States. 

CONCLUSION 

Big data and machine learning approaches can synthesize information from numerous sites 
and scenarios into a single model, which is the power of these techniques for challenges like 
this. For example, if we want to simulate catchment behavior under nonstationary 
conditions (e.g., changing climate), a single LSTM trained to recognize and distinguish 
different types of hydrological behavior (as shown here) will have a wider range of 
conditions where it can be expected to remain realistic than a model calibrated to past 
conditions in only one basin. The most effective technique moving ahead, in our opinion, 
will most likely be theory-guided data science. Across scientific disciplines, there are 
currently various methodologies that enable significant fusions of domain knowledge with 
machine learning and other algorithms for learning and predicting directly from data. 
Adopting strategies like this will be crucial in the future. 
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