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ABSTRACT 
Deep learning is currently the most successful machine learning technology in a 
wide range of application fields, and it has recently been used to forecast 
possible therapeutic targets and screen for active compounds in drug discovery 
research. However, it is unclear whether deep learning can outperform existing 
computational methods in drug discovery tasks due to the lack of large-scale 
studies, the compound series bias that is common in drug discovery datasets, 
and the hyperparameter selection bias that comes with the large number of 
potential deep learning architectures. As a result, we compared the outcomes of 
different deep learning methods to those of other machine learning and target 
prediction methods on a large-scale drug development dataset. We employed a 
stacked cluster-cross-validation technique to avoid any biases from 
hyperparameter selection or compound series. We discovered that (i) deep 
learning methods beat all competing methods, and (ii) deep learning's 
prediction performance is often comparable to that of tests conducted in wet 
labs (i.e., in vitro assays). 

 

Source of Support: ChEMBL Platform, Machine Learning Algorithms, Drug Target 
Prediction 
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INTRODUCTION 

The drug development procedure often entails a vast number of biological experiments and 
tests, referred to as "assays," that are used to assess the biological effects of chemical 
compounds. These effects, which include toxicity (Molina et al., 2013) and the inhibition or 
activation of proteins or entire biological processes, decide whether a chemical molecule will 
succeed or fail in its quest to become a commercial medicine. 

It takes a long time and money to carry out these experiments. To obtain a single data point, 
a cell line must normally be grown. Even the multibillion-dollar Tox21 project (Huang et al., 
2016), for example, could only screen a few thousand molecules for as few as twelve 
hazardous effects. As a result, precise computational target prediction methods are 
extremely beneficial in assisting and improving the drug discovery process. 

http://creativecommons.org/licenses/by-nc/4.0/
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Deep learning, a new computer technique that has made an impact in a variety of fields, has 
lately been successfully used not only to target prediction (Ma et al., 2015; Mayr et al., 2016) 
but also to a variety of other chemistry problems. For example, autonomous molecule 
generation (G´omez-Bombarelli et al., 2016; Segler et al., 2018; Olivecrona et al., 2017; Yang 
et al., 2017; Preuer et al., 2018; Paruchuri, 2017), chemical synthesis planning, (Segler et al., 
2018) drug synergy prediction (Preuer et al., 2017), or modeling quantum interactions 
(Sch¨utt et al., 2017) and speeding up quantum mechanical computations (Smith et al., 2017), 
all of which could aid in the development of novel efficient molecular organic light-emitting 
diodes (G´omez-Bombarelli et al., 2016; Bynagari, 2014).  

The primary purpose of this research was to compare the performance of deep learning with 
that of other approaches for predicting pharmacological targets.  

LITERATURE REVIEW 

Because deep learning architectures allow for multitask learning (Caruana, 1997; Deng et al., 
2013; Bengio et al., 2013) and automatically create complex features, they appear to be well suited 
to target prediction (Bengio et al., 2013). First, multitask learning has the advantage of allowing 
for multilabel information and thus allowing for the use of target relationships. Hidden unit 
representations can be exchanged between predictions tasks when using multitask learning. 
Because few measurements are available for some goals, single task prediction may fail to 
generate an appropriate representation. Deep learning, on the other hand, can make use of 
representations acquired across tasks and with a few training examples, you can improve task 
performance. Figure 1 shows that many chemicals were measured assays (le), and – as a result of 
this finding – that there are assays with a high degree of correlation are available (right). Second, 
take a big breath. A compound's hierarchical representation is provided via networks. Higher 
levels denote more complicated properties (Bengio, 2013; Ganapathy, 2015). Single atoms are 
grouped together as functional groups and reactive centers, which in turn dene 
pharmacophores, resulting in a hierarchy of characteristics. The state-of-the-art approach in 
which chemists and medication designers think about the qualities of each chemical component 
is one of these features (Kazius et al., 2005). 

When comparing drug target prediction algorithms, there are various problems to avoid, 
including choosing a comparison dataset, compound series bias in chemical datasets, and 
hyperparameter selection. 

 

Figure 1: Assay correlation (left: number of compounds (log-scaled) measured on both 
assays, right: Pearson correlation on commonly measured compounds). 
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To begin with, many technique comparison studies only include a single or a small number 
of assays or targets (Ma et al., 2015; Ramsundar et al., 2015; Kearnes et al., 2016; Koutsoukas 
et al., 2017), whereas compound databases, such as ChEMBL (Bento et al., 2014; Bynagari, 
2015), have many more tests. 

As a result, despite the enormous amount of publicly available data, these research limit the 
conclusions of method comparisons to a small group of tests and underestimate the 
multitask learning effect. Some target prediction algorithms can use information from 
related assays to improve the predictive performance of a specific experiment. Multitask 
learning algorithms are the name given to such algorithms. Information from similar tests 
can help assays with few measurements in particular. Other potential benefits of multitask 
settings are overlooked, like the ability to generate predictions for a large number of 
experiments at once, which might aid chemists and biologists in conceptualizing how 
specific chemicals would operate at the cellular level. As a result, including a large number 
of assays in a technique comparison research is highly desired in order to assess the benefits 
of multitask learning in terms of prediction performance and to provide more general, 
useful information comparative declarations on target extrapolation approaches. 

Second, most comparison studies suffer from compound series bias (Sheridan, 2013), which 
leads to an overestimation of certain approaches' performance. Chemical compounds are 
often formed as chemical scaffolds rather than individual compounds, and new substances 
are derived from these scaffolds by adding various functional groups (Ganapathy, 2016b). 
Predicting target activity for a compound from a new compound series is more challenging 
than predicting target activity for compounds from a series that is already in the training set 
(Bynagari, 2016). As a result, if the projected prediction performance suffers from compound 
series bias, it is overoptimistic in comparison to how the prediction method is employed in 
practice to forecast compounds from fresh compound series. 

Third, hyperparameter selection biases performance estimates (hyperparameter selection 
bias). This is particularly true in deep learning, which allows for a wide range of 
architectures, activation functions, learning rates, and regularization parameters. If the 
adjustment of hyperparameters for creating predictive models is influenced by label 
information from the test set, bias may appear (Vadlamudi, 2016). In practice, however, no 
test set labels exist to alter hyperparameters. 

As a result, the estimation of prediction performance is frequently overoptimistic. Because 
different learning algorithms have varying amounts of hyperparameters and varied 
adjustment capabilities for the hyperparameters, different learning algorithms have 
different overt tendencies. As a result, a technique comparison influenced by 
hyperparameter selection bias is usually unjust.  

METHODS 

To circumvent the first issue, we used the ChEMBL database to extract a large benchmark 
dataset that enables for accurate evaluation of machine learning approaches for compound 
target prediction. There are over 500, 000 chemicals and over 1, 000 assays in the dataset. 
These assays are different in size and correspond to a range of target classes (e.g. enzymes, 
ion channels, and receptors) (Ganapathy, 2017). Many of the assays in the dataset have only 
a few measurements (a few hundred to several hundreds), however there are also numerous 
assays with a huge number of observed chemicals (tens of thousands).  
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Cluster-cross-validation4 is used to solve the second problem. The set of data points is 
randomly partitioned into many folds in traditional cross validation. Each fold serves as a 
test set once during processing, with the remaining folds forming the training set. The 
training set is accessible to develop a new predictive model in each iteration, while the 
model's prediction performance is estimated on the test set. Cluster-cross-validation 
distributes entire clusters of compounds across folds rather than distributing data points to 
folds randomly (Bynagari, 2017). As a result, chemical molecules from the same cluster can 
be found in either the training or test sets. Cluster-cross-validation, in particular, prevents 
some data points from a given cluster from being included in the training set while others 
from the same cluster are included in the test set (Ganapathy & Neogy, 2017).  

A machine learning system must therefore accurately predict the activity of chemicals from 
fresh scaffolds in a large number of examples in a cluster-cross-validation benchmark. 
Cluster-cross-validation analyzes the performance of techniques for predicting compounds 
based on novel chemical scaffolds, taking into account the manner chemical compounds are 
formed. Applying a stacked cross-validation scheme to the third problem solves it 
(Baumann and Baumann, 2014; Hochreiter and Obermayer, 2004). The algorithms' 
prediction performance is measured in the outer loop, while the hyperparameters of the 
various techniques are adjusted in the inner loop, allowing the methods to choose their 
optimum settings for generating predictive models in the outer loop. In our layered cluster-
cross-validation configuration, we used a total of three distinct folds.  

The inner loop employs one of our benchmark dataset's three folds for training and one fold 
for validating the hyperparameter combinations found in each iteration, while the outer 
loop uses the final fold as a test fold. For training a model, the outer loop employs the inner 
loop's training and test folds. The outer loop hyperparameters are chosen based on an inner 
loop cross-validation prediction performance criterion. As a result, hyperparameter 
selection does not skew the performance estimates produced by layered cross-validation.  

We conducted an experiment that compares the accuracy of in silico predictions to the 
accuracy of in vitro measurements, in addition to an in silico prediction performance 
comparison study. We explicitly discuss the issue where two assays are dissimilar but must 
evaluate the same biological effect of a chemical. We compared whether a virtual assay or a 
surrogate in vitro assay is more accurate at predicting the outcome of an assay of interest 
because our in silico prediction method might be considered a virtual assay. 

RESULTS AND DISCUSSION 

In order to create a benchmark dataset, we treated target prediction as a binary classification 
issue. The goal is to predict a binary assay result, which reveals whether a molecule binds to 
a certain receptor, inhibits a pathway, or causes hazardous effects. Even if the assays under 
consideration share the same biomolecular target, each ChEMBL experiment is treated as a 
separate classification problem. 

As a result, we avoid combining results from incompatible types of assays (Kalliokoski et 
al., 2013) (for example, binding assays, antagonist assays, and agonist assays cannot be 
compared because an antagonist is negative in an agonist assay and vice versa). We created 
a methodology for applying binary labels to the assay results because the raw assay 
measurement signal is only a real number, and binary labels are not provided. As a result, 
we were able to generate a large-scale benchmark dataset from ChEMBL.  
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We compared the predictions of several deep learning architectures with a variety of 
methods, including support vector machines (Cortes and Vapnik, 1995) (SVMs) and K-
nearestneighbors (KNNs) as examples of similarity-based classification methods and 
random forests (Breiman, 2001) (RFs) as an example of feature-based classification methods. 
In addition, we compared naïve bayes (NB) and SEA (Keiser et al., 2007; Keiser et al., 2009; 
Keiser et al., 2009), which we deemed to be examples of target prediction algorithms created 
specifically for drug discovery. They normally get a whole 2D image as input, and one of 
the most distinguishing features of this network type is that parameters are shared among 
neurons. CNNs have multiple convolution and pooling layers, with the convolution layer 
outputs often computed using a parametrized kernel and the pooling layer outputs typically 
computed using a simple aggregation function. In this paper, we look at graph 
convolutional networks that utilise neighbourhoods defined by a molecular graph topology 
rather than pixel neighbourhoods as in 2D images. We specifically examined two 
implementations.  

We employed the area under the receiver operating characteristic curve (Hanley and 
McNeil, 1982) (abbreviated as ROC-AUC or, as it is our default metric, simply AUC) as a 
performance assessment criterion for comparing target prediction algorithms. The AUC 
criterion is a popular metric for evaluating computational target prediction systems (Dahi et 
al., 2014; Huang et al., 2016). 

We identified assay pairs in ChEMBL that evaluate the same biological effect in order to 
compare in silico predictions to in vitro measurements. The assay with fewer measured 
compounds was used as the ground truth, while the assay with a larger number of 
measured compounds was used as the surrogate assay. The surrogate's in vitro prediction 
accuracy was then compared to the in silico prediction accuracy.  

There are 456, 331 compounds in the ChEMBL benchmark dataset, which we constructed 
and utilized to assess several target prediction algorithms. The molecular graphs of chemical 
compounds are used to describe them. Only graph convolutional networks, on the other 
hand, can handle graphs directly. We developed a sequence or a vectorial representation of 
the compounds for the other compared machine learning methods. We created the SMILES 
representation, which is used as an LSTM input. We used conventional software to 
construct a number of chemical descriptors for procedures that require numerical vectors 
(Cao et al., 2013; Hinselmann et al., 2011). Static features, semisparse features, toxicophore 
features, and dynamic features were all lumped together into four categories. Experts 
usually identify static features that indicate specific molecular properties. Their number is 
usually axed, while dynamic properties are retrieved in a prespecified manner on the y from 
a compound's chemical structure. Dynamic features typically have sparse binary or count 
distributions, implying that only a tiny percentage of compounds have the characteristic. 
Static features, on the other hand, are more likely to have continuous or sparse distributions.  

The amount of semisparse features is predetermined, just like static features, however the 
construction concept is comparable to dynamic features. Toxicophore characteristics are the 
absence or presence of a set of predetermined structural alarms, known as toxicophores, in a 
chemical (Vadlamudi, 2017). We compared the prediction performances for the following 
feature categories or combinations of feature categories individually: common static features 
(Cao et al., 2013) (StaticF), common semisparse features (SemiF), including MACCS 
descriptors, as well as extended connectivity ngerprint features (Rogers and Hahn, 2010) 
(ECFP) and depth rst search features (Swamidass et al., 2005) (DFS). 
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Large-scale comparison 

We obtained a performance estimate for each technique, feature category, and assay using our 
nested cluster-cross-validation procedure, which we refer to as "assay-AUC" (mean of 
ROCAUC values over the folds). Compound series and the hyperparameter selection 
technique have no effect on this estimate. For ECFP6 characteristics, the distribution of the 
assay-AUC values is also displayed in Figure 2. We used Wilcoxon signed rank tests between 
all pairs of algorithms to see if one method significantly outperformed another. The p-values 
for ECFP6 characteristics as well as the combination of ECFP6 and ToxF (ECFP6 + ToxF).  

Note that we couldn't utilize the static features for the NB statistics since the approach 
required binary features; instead, we used a binarized version of the features that mapped 
all count values over zero to one for the other feature categories in NB. We also calculated 
solely SEA results for ECFP6 characteristics. We skipped the computation of the other 
feature categories due to the low performance compared to other approaches and the high 
computing demand. 

 
Figure 2. Performance comparison of drug target prediction methods.  

For each feature category, we found that FNNs significantly outperform (a 14, 0.01) the 
other investigated approaches. Furthermore, for practically all feature categories except 
StaticF features, FNNs outperform graph convolutions (GC, Weave) or SmilesLSTM. SVMs 
are the second best approach. If ECFP6, ECFP6 + ToxF, or SemiF features are employed, 
they are significantly better than graph convolution networks or SmilesLSTM. The 
SmilesLSTM has a higher average AUC than the two graph-based techniques, which is 
surprising. It may also be seen that traditional machine learning approaches, such as SVMs 
or RFs, outperform traditional chemoinformatics methods. Many algorithms benefit from 
ECFP6 + ToxF features in general, however FNNs based on the feature category "SemiF" 
obtain the best results. FNNs have the best overall performance across all prediction tasks. 

Machine learning models as virtual assays 

We tested whether FNNs can predict assay outcomes as precisely as another (surrogate) in 
vitro assay measuring the same target, because we identified deep learning as the best 
method for compound target prediction. Our technique for establishing the benchmark 
dataset, which included the use of weakly active and weakly inactive drugs, determined the 
activity of both considered in vitro assays (Vadlamudi, 2015). In the case of in silico tests, the 
anticipated activity is determined by the computer model, while in the case of surrogate in 
vitro assays, it is determined by the data. We can compare the performance of an in silico 
and an in vitro assay in this way. 
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Figure 3. Comparison of prediction accuracy for an in vitro assay. 

The average accuracy for predicting a selected assay using a surrogate in vitro assay that 
measured the same target was 0.81 - 0.17, while the average accuracy for predicting the 
selected assay using DNN models was 0.82 0.10. There was no significant difference in 
accuracy between the surrogate in vitro assay and the computational technique for 13 of the 
22 assay pairings (see Fig. 3). In five of the 22 cases, the computational technique was more 
accurate than the surrogate in vitro assay. The surrogate in vitro assay outperformed deep 
learning in four of the 22 assays. Overall, deep learning's predictive performance for an 
assay with a specific target is comparable to surrogate assays assessing the same target. 

 

Figure 4. Scatterplot of predictive performance (“AUC”, y-axis) and size of the training set 
(“trainset size”, x-axis). Colors indicate three different predictive methods, namely FNNs, 
SVMs, and RFs. 
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Dataset size and prediction performance 

We looked at the association between the AUC values of the test set and the size of the 
training set to see if there was a link between dataset size and performance (see Figure 4). In 
principle, it can be seen that higher training set sizes lead to better predictions (Neogy & 
Paruchuri, 2014). Even if there are only a few examples available, the AUC reveals that the 
performance is almost always superior to random classification (Paruchuri, 2015).  

Prediction performance for different ChEMBL target classes and assay types. 

We also looked into if there were any changes in performance between different types of 
tests. To this goal, we looked at the primary ChEMBL target classes allocated to the assays, 
as well as the assay types to which an assay belongs (Ganapathy, 2016a). Figure 5 depicts a 
boxplot of prediction performance for each of the key ChEMBL target classes, while Figure 6 
depicts a boxplot for the various assay types. On the one hand, the assays' principal target 
classes assigned by ChEMBL, and on the other side, the assay types to which an assay 
belongs. Figure 5 depicts a boxplot of prediction performance for each of the key ChEMBL 
target classes, while Figure 6 depicts a boxplot for the various assay types. The number of 
assays used to create the boxplots is listed next to the class or type name. It's worth noting 
that Figure 5 is based on only a subset of assays (those with annotations) and that assays can 
belong to multiple classes. Figure 5 indicates that the prediction performance of DNNs is 
clearly superior to random across all classes, implying that the application of DNNs may be 
quite broad and not limited to a few well-known targets. Deep learning works well for 
functional and binding experiments, as seen in Figure 6. 

 

Figure 5. Boxplot of assay-AUC values for various assay classes when using a DNN on a 
combination of ECFP6 and ToxF features. 

 

Figure 6. Boxplot of assay-AUC values for various assay types when using a DNN on a 
combination of ECFP6 and ToxF features 
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CONCLUSION 

We evaluated deep learning's predicted performance to a number of other drug target 
prediction approaches, avoiding the normal biases in compound target prediction method 
comparison research. FNNs outperform other approaches for drug target prediction, 
according to our findings. This finding isn't limited to a single form of molecular descriptor, 
but rather applies to all sorts of molecular descriptors. Furthermore, we discovered that 
deep learning enables the creation of models with great prediction performance for a wide 
range of goals. As the training dataset grows, so does the performance. We also 
demonstrated that deep learning is comparable to – and sometimes even better than – 
surrogate in vitro assays for predicting a specific target. Large compound-assay databases, 
like as ChEMBL, provide enough data for very accurate deep learning models to be built. 
We believe that employing in-house databases maintained by pharmaceutical corporations 
as high-quality, large-scale training sets could lead to even more performance increases. 
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