
Asian Journal of Applied Science and Engineering, Volume 7, No 1/2018 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2018 Author/(s) Page 101

Exploring the Symbiosis: Dynamic Programming

and its Relationship with Data Structures

Vishal Reddy Vadiyala1, Parikshith Reddy Baddam2

1Software Developer, AppLab Systems, Inc., South Plainfield, NJ 07080, USA
2Software Developer, Data Systems Integration Group, Inc., Dublin, OH 43017, USA

ABSTRACT
Dynamic Programming and Data Structures are two cornerstones of computer
science and software development. While they are often studied independently,
understanding their intricate relationship can lead to more efficient algorithm
design and problem-solving. In this article, we will delve into the symbiotic
connection between Dynamic Programming and Data Structures, exploring how
they complement each other and contribute to the optimization of algorithmic
solutions. The field of algorithmic problem-solving is dominated by dynamic
programming (DP), recognized for its ability to optimize complex computations.
DP is a cornerstone in this field. An investigation into dynamic programming will
be carried out in this article, which will dissect its essential ideas and potential
applications. In addition to providing a simple explanation, the article dives into
the mutually beneficial relationship between Dynamic Programming and various
data structures. It sheds light on using arrays, linked lists, trees, graphs, and other
data structures to achieve optimal problem-solving. Concrete examples of the
application of DP in conjunction with various data structures are provided via
real-world case studies. These case studies include the Fibonacci sequence as well
as Dijkstra's Algorithm. The article offers a complete guide for developers and
fans eager to grasp the full power of Dynamic Programming in conjunction with
data structures, which also digs into optimization strategies, obstacles, and future
trends.

Keywords: Dynamic Programming, Data Structures, Algorithmic Paradigm, Optimization,
Arrays and Matrices, Linked Lists, Trees and Graphs, Hash Tables, Queues and
Stacks

 This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially,
and although the new works must also acknowledge & be non-commercial.

INTRODUCTION

In algorithmic problem-solving, dynamic programming (DP) is a technique that has been
around for a long time and is well-known for its capacity to address complex computational
difficulties effectively. It is a paradigm that goes beyond the conventional algorithms that
have been present in the past. It provides a systematic and sophisticated way to optimize
solutions by breaking down difficulties into simpler subproblems. Throughout this essay,
we will embark on an enlightening trip through the complexities of dynamic programming.
We will dissect its fundamental concepts and investigate the mutually beneficial
relationship that dynamic programming has with various data structures (Thaduri, 2017).

http://creativecommons.org/licenses/by-nc/4.0/

Vadiyala & Baddam: Exploring the Symbiosis: Dynamic Programming and its Relationship with Data Structures (101-112)

Page 102 Volume 7, No 1/2018 | AJASE

Richard Bellman, a mathematician and computer scientist, proposed the idea of dynamic
programming for the first time in the middle of the 20th century. This is where the origins of
dynamic programming may be found (Lal & Ballamudi, 2017). After being initially
conceived as a problem-solving paradigm to address optimization issues, Dynamic
Programming rapidly developed into a versatile method that can be applied in various
disciplines (Desamsetti, 2016a). A testament to its widespread applicability is its use in fields
like computer science, economics, operations research, and artificial intelligence. The
attractiveness of dynamic programming comes in its capacity to transform problems that
give the impression of being insurmountable into tasks that can be accomplished by
breaking them down into subproblems that overlap. By solving and memorizing these
subproblems methodically, DP can reach optimal answers while avoiding redundant
computations. This strategic approach differentiates Dynamic Programming (DP) from
brute-force methods, making it particularly well-suited for situations where efficiency is
paramount (Dekkati et al., 2016).

By providing readers with a clear and thorough grasp of the fundamental ideas and uses of
dynamic programming, this essay aims to demystify an otherwise mysterious topic. The
essay goes beyond a theoretical investigation and gets into the practical domain,
demonstrating how Dynamic Programming may be used with various data structures to
improve problem-solving effectiveness (Baddam & Kaluvakuri, 2016). Real-world examples
and case studies will be reviewed to provide specific insights into the implementation of DP,
and the natural world will show the efficacy of DP in addressing obstacles ranging from
straightforward computational jobs to intricate optimization issues (Kaluvakuri & Lal, 2017).
The scope of this article spans a wide range of topics, ranging from the fundamental ideas
behind dynamic programming to its more complex uses in conjunction with various data
structures. The reader will be taken on a journey through the fundamental aspects of DP,
which include memoization, optimal substructure, and overlapping subproblems.
Uncovering the connection between Dynamic Programming and essential data structures
such as arrays, linked lists, trees, graphs, hash tables, queues, and stacks is another aspect of
the investigation that is being carried out (Dekkati & Thaduri, 2017).

This article will delve into real-world applications using thorough case studies. We will
demonstrate how Dynamic Programming may be utilized to tackle problems such as the
Fibonacci sequence, the Longest Common Subsequence, the Shortest Path Algorithms, the
Knapsack Problem, and Matrix Chain Multiplication (Desamsetti, 2016b). These examples
will serve as an illustration of the versatility and effectiveness of DP in a variety of issue
domains through their practical application. Furthermore, the paper will discuss
optimization approaches within the realm of dynamic programming, including unraveling
strategies for space optimization, analyzing time complexity, and exploring tradeoffs. There
will be a discussion on the difficulties involved with implementing DP and the best
practices that can be used to avoid potential problems (Laptev et al., 2017).

In the final half of the article, we will look into the future and investigate the different trends
and breakthroughs that are now emerging in Dynamic Programming. The integration of DP
with machine learning, parallel, and distributed computing, and the possibility of its
function in the field of quantum computing will be included in this (Kaluvakuri & Vadiyala,
2016). In essence, the purpose of this article is to serve as a thorough reference for
practitioners of all experience levels, providing a holistic grasp of Dynamic Programming
and its subtle interplay with data structures (Maddali et al., 2018). At the beginning of this

Asian Journal of Applied Science and Engineering, Volume 7, No 1/2018 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2018 Author/(s) Page 103

investigation, we invite the readers to unravel the complexities of DP, thereby revealing its
potential to change problem-solving methodologies across various fields.

UNDERSTANDING DYNAMIC PROGRAMMING

On the other hand, Dynamic Programming (DP) emerges as a powerful algorithmic
paradigm that offers an effective solution to issues that display overlapping subproblems
and optimal substructure. To understand what DP is all about, it is essential to investigate
its core principles and properties.

Definition and Origins

"Dynamic Programming" refers to a mathematical optimization technique that Richard
Bellman initially conceived in the 1950s. Even though it is called Dynamic Programming, the
term "programming" does not refer to the act of coding but rather to planning and making
decisions (Vadiyala et al., 2016). This is the essence of DP, which was Bellman's rationale for
addressing complex problems by breaking them down into simpler subproblems, solving
each subproblem only once, and storing the solutions for future reference. Bellman's
objective was to address complex problems.

Characteristics of Dynamic Programming: Dynamic programming has two fundamental
qualities: overlapping subproblems and optimal substructure. These are called the core
features.

 Overlapping Subproblems: In many cases, the solution to the overall problem can be
formed by integrating the solutions to the different subproblems that comprise the
more significant situation. The most important realization is that these subproblems
frequently combine, which means the same subproblem is solved numerous times
throughout the process. DP utilizes the approach known as memoization to take
advantage of this repetition. This is accomplished by solving each subproblem once
and saving the result for later use.

 Optimal Substructure: From the optimal solutions of the subproblems that make up
the overall problem, it is possible to create the optimal solution to the general problem.
To put it another way, the problem has a recursive structure, which means that to
discover the best solution, it is necessary to find the best answers to the subproblems
that comprise the whole problem. DP uses this structure to construct the optimal
solution methodically by creating it from the solutions of smaller subproblems.

When to Use Dynamic Programming: Especially helpful is the application of dynamic
programming in situations where a problem exhibits the following characteristics:

 Optimal Substructure: Through the process of breaking the problem down into
smaller, more manageable subproblems, it is possible to construct the optimal solution
to the bigger problem by creating it from the optimal solutions of the subproblems that
make up the more significant problem (Májeková et al., 2016).

 Overlapping Subproblems: Because the problem is recursive, it is necessary to answer
the same subproblems more than once. Through the process of solving each
subproblem only once and saving the solutions for later use, DP can optimize this
endeavor.

Vadiyala & Baddam: Exploring the Symbiosis: Dynamic Programming and its Relationship with Data Structures (101-112)

Page 104 Volume 7, No 1/2018 | AJASE

 Memoization Opportunities: Storing answers to subproblems and reusing them when
necessary considerably minimizes the number of calculations performed redundantly,
contributing to the effectiveness of Deep Learning algorithms.

Top-Down vs. Bottom-Up Approaches: Two basic methods can be utilized to implement
dynamic programming: top-down and bottom-up.

 Top-Down Approach (Memoization): The top-down strategy involves recursively
solving the problem, which consists of breaking it down into further subproblems.
Solutions to subproblems are memoized to prevent additional computations from
being performed, which means they are saved for future reference. Recursion is
frequently used as a method for implementing this strategy.

 Bottom-Up Approach (Tabulation): Within the framework of the bottom-up
methodology, the problem is solved iteratively, beginning with the most basic
subproblems and gradually progressing to the entire situation. A table stores the
solutions to the subproblems, and the ultimate answer is obtained by merging the
outcomes of the subproblems that have been held.

DYNAMIC PROGRAMMING IN ACTION

Applying Dynamic Programming (DP) to situations in the real world brings it to life. In the
next section, we will investigate several instances that demonstrate the adaptability and
efficiency of DP in resolving various computing issues.

 Fibonacci Sequence: The Fibonacci sequence is a well-known example that illustrates
the fundamental principles of DP. The following is the definition of the sequence:
When n is greater than or equal to 2, the function F(n) is similar to the sum of F(n-1)
and F(n-2), and F(0) is equal to zero. When this concept is implemented in a naive
recursive manner, the time complexity increases exponentially because of the duplicate
computations performed. On the other hand, DP allows optimization of this process by
memorizing the outcomes of previously computed Fibonacci numbers. This ensures
that each number is only added once. Through this transformation, the time
complexity of the method is reduced to linear, demonstrating the effectiveness of DP in
optimizing recursive computations (Friedl & Kabódi, 2017).

 Longest Common Subsequence: Within the realm of string processing, the Longest
Common Subsequence (LCS) problem is a well-known example of a DP application.
When given two sequences, the objective is to determine the length of the longest
subsequence shared by both sequences. A table that stores the lengths of LCS for
subproblems is defined by DP, which allows it to approach this problem efficiently. DP
can achieve an optimal solution with a time complexity proportional to the product of
the sequence lengths. This is accomplished by methodically building from smaller
subsequences to the complete sequences.

 Shortest Path Algorithms: Dynamic programming is essential in resolving shortest
path issues, such as the Algorithm developed by Dijkstra. In graph theory, Dijkstra's
Algorithm is a method that determines the shortest paths on a weighted graph that
connect a source vertex to all of the other vertices. Dynamic programming (DP)
optimizes the computation by keeping a priority queue and iteratively updating the
shortest pathways. This results in a time complexity of O((V + E)logV), where V is the
number of vertices and E is the number of edges.

Asian Journal of Applied Science and Engineering, Volume 7, No 1/2018 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2018 Author/(s) Page 105

 Knapsack Problem: To solve the Knapsack Problem, one must choose a subset of
objects with the highest possible total value while considering a constraint on the
overall weight. By constructing a table to contain solutions for subproblems, DP can
address this issue effectively. Within this table, each cell represents the optimal value
for a particular combination of elements and weight. DP determines the most
significant value that can be achieved while adhering to the weight limitation by
iteratively populating the table and considering the optimal substructure (Gaillard et
al., 2016).

 Matrix Chain Multiplication: Matrix Chain Multiplication is a problem in which the
objective is to parenthesize a series of matrices in such a way as to reduce the total
number of scalar multiplications (Ballamudi & Desamsetti, 2017). DP can solve this
problem most efficiently by developing a table that stores answers for subproblems. As
a demonstration of DP's effectiveness in dealing with optimization issues, the table is
filled methodically, and the optimal parenthesization is derived.

These examples demonstrate how dynamic programming may be applied to various
problem areas when modified appropriately. DP algorithms utilize the principles of
overlapping subproblems, optimal substructure, and memoization to turn computationally
expensive problems into manageable and efficient solutions. The ability to break down
complex issues into smaller, more manageable subproblems, in conjunction with selective
memoization, characterizes the essence of DP and highlights its role in algorithmic design
(Thaduri et al., 2016). The following sections will investigate how DP interacts with various
data structures to improve its problem-solving capacity (Vadiyala, 2017).

DATA STRUCTURES IN DYNAMIC PROGRAMMING

Dynamic programming (DP) can realize its full potential when paired with various data
structures. In the following part, we will investigate how DP may be easily integrated with
arrays, linked lists, trees, graphs, hash tables, queues, and stacks, extending its problem-
solving capabilities across various fields.

 Arrays and Matrices: A significant amount of DP uses arrays and matrices, which are
fundamental data structures. When dealing with issues that have states that are only
one dimension, a straightforward array is sufficient to hold solutions for subproblems.
On the other hand, two-dimensional arrays or matrices are utilized when dealing with
two-dimensional states or considering pairs of parameters. Computing the Fibonacci
sequence using DP is an excellent example to consider. The solutions to subproblems
can be effectively stored in an array, enabling them to be retrieved constantly during
subsequent computing efforts. When dealing with the Longest usual Subsequence
problem, using a two-dimensional array to store the lengths of common subsequences
for various pairings of indices is standard practice (Lal, 2015).

 Linked Lists: When the data demonstrates a recursive or connected structure, linked
lists become relevant. Examples of problems that can benefit from DP solutions
implemented with linked lists include sequences or chains of elements. When
optimizing the computation of solutions for subproblems, linked lists are utilized
because of their efficient traversal and modification capabilities.

 Trees and Graphs: Applying dynamic programming is critically important when
optimizing solutions for problems involving graphs and trees. As an illustration, DP
can calculate optimal solutions in a time-efficient manner for issues associated with

Vadiyala & Baddam: Exploring the Symbiosis: Dynamic Programming and its Relationship with Data Structures (101-112)

Page 106 Volume 7, No 1/2018 | AJASE

binary trees by considering the characteristics of optimal substructure and overlapping
subproblems. Dijkstra's Algorithm, evaluated as a classic graph algorithm, uses DP
principles to determine the shortest paths between nodes in a weighted graph.

 Hash Tables: Hash tables are handy when solving problems in DP that call for
relatively speedy lookups or mappings. The capability to access stored solutions in a
constant time frame dramatically improves the effectiveness of DP algorithms. Hash
tables are frequently utilized for memoizing solutions for subproblems. This helps to
ensure that redundant computations are reduced to a minimum (Hung et al., 2015).

 Queues and Stacks: DP algorithms use queues and stacks to manage state transitions
and methodically explore solution spaces (Lal, 2016). Queues and stacks are essential
data structures for situations in which the order in which subproblems are explored is
necessary, such as in topological sorting or specific graph traversals. These allow for
the organized study of subproblems, guaranteeing that the optimal solutions are
derived methodically.

By adapting DP to the particular properties of various data structures, practitioners can tune
their algorithms to solve different situations effectively. The selection of an acceptable data
structure is frequently determined by the nature of the problem that is currently being
addressed. The synergy that exists between DP and a variety of data structures is an
example of the versatility that DP possesses in terms of problem-solving.

In the following parts, we will go into specific case studies, demonstrating how DP
integrates with different data structures to optimize solutions for real-world situations. Both
of these examples will be presented in the following sections. These examples will allow
readers to acquire practical insights into the mutually beneficial interaction between DP and
various data structures.

UNVEILING DATA STRUCTURES IN THE EQUATION

In the realm of algorithmic problem-solving, the choice of data structures plays a pivotal
role in determining the efficiency and effectiveness of solutions. As we embark on the
journey of unraveling the symbiotic relationship between Dynamic Programming (DP) and
Data Structures, it's crucial to shine a spotlight on the key role that data structures play in
enhancing the performance of algorithms.

The Foundation of Efficient Algorithms

Data structures serve as the bedrock upon which algorithms are built. They are the
architectural elements that allow for the organized storage, retrieval, and manipulation of
data, fundamentally influencing the speed and efficiency of computations. In the context of
Dynamic Programming, where the goal is to break down complex problems into simpler
subproblems, the choice of data structures becomes particularly crucial.

 Efficient Data Storage: One of the primary functions of data structures in the context of
Dynamic Programming is to facilitate the storage of intermediate results. As DP
algorithms solve subproblems and store their solutions, an aptly chosen data structure
ensures that the retrieval of these solutions is fast and doesn't impede the overall
efficiency of the algorithm.

 Faster Retrieval and Manipulation: Dynamic Programming often involves revisiting
and reusing solutions to subproblems. In this scenario, the choice of data structures

Asian Journal of Applied Science and Engineering, Volume 7, No 1/2018 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2018 Author/(s) Page 107

becomes a strategic decision. For example, using arrays or matrices can provide
constant-time access to stored solutions, significantly speeding up the process of
combining subproblem solutions to solve larger problems.

KEY DATA STRUCTURES IN DYNAMIC PROGRAMMING

Several data structures seamlessly integrate with Dynamic Programming paradigms,
enhancing the algorithmic efficiency. Understanding their role is instrumental in optimizing
problem-solving approaches.

 Arrays and Matrices: Arrays are the simplest and most widely used data structure in
the context of Dynamic Programming. They offer constant-time access to elements,
making them ideal for storing solutions to subproblems. Matrices, an extension of
arrays, find extensive use in problems where the state space has multiple dimensions.

 Memoization with Hash Tables: Hash tables provide an efficient mechanism for
memoization in DP. By associating keys with values, hash tables allow for the constant-
time retrieval of previously computed solutions, reducing redundant computations
and optimizing the overall time complexity of the algorithm.

 Trees and Graphs: In problems involving hierarchical or interconnected data, trees and
graphs become indispensable. Dynamic Programming applied to tree or graph
structures often relies on suitable data structures to traverse and store intermediate
results, ensuring efficient exploration of the solution space.

The relationship between Dynamic Programming and Data Structures is not one of mere
collaboration but one of mutual enhancement. As we unveil the role of data structures in the
equation, it becomes evident that choosing the right structures is a strategic decision that
can elevate the efficiency and scalability of DP algorithms (Kaluvakuri & Lal, 2017). In the
dynamic landscape of algorithm design, understanding this symbiosis is essential for
crafting elegant and high-performance solutions.

BEST PRACTICES AND TIPS FOR OPTIMIZATION

Choosing the right data structure for the problem

The efficiency and effectiveness of an algorithm are intrinsically tied to the choice of data
structure. Selecting the appropriate data structure for a given problem is a critical decision
that can significantly impact the algorithm's performance. In this exploration, we delve into
the importance of choosing the right data structure and how it influences the success of
algorithmic solutions.

Understanding the Problem Characteristics

The first step in selecting the right data structure is a deep understanding of the problem at
hand. Different problems exhibit unique characteristics, and a careful analysis of these traits
guides the choice of a data structure that aligns with the problem's requirements.

Matching Data Structures to Problem Characteristics

Arrays for Fast Access: Arrays are ideal for scenarios where constant-time access to
elements is crucial. Their contiguous memory allocation allows for rapid retrieval,
making them suitable for problems involving indexing, such as the Knapsack
Problem.

Vadiyala & Baddam: Exploring the Symbiosis: Dynamic Programming and its Relationship with Data Structures (101-112)

Page 108 Volume 7, No 1/2018 | AJASE

Linked Lists for Dynamic Data: In situations where data is constantly changing or growing,
linked lists provide a dynamic solution. Their flexibility in size and structure makes
them advantageous for scenarios requiring frequent insertions and deletions.

Trees and Graphs for Hierarchical Relationships: Hierarchical relationships are best
represented by tree and graph structures. Trees, with their natural hierarchy, are
suitable for problems like Huffman Coding. Graphs, on the other hand, excel in
representing interconnected data, making them ideal for network-related problems.

Balancing Time and Space Complexity

Choosing the right data structure involves a careful balance between time and space
complexity. While some structures may optimize for faster retrieval, others prioritize
efficient use of memory. Striking the right balance ensures that the algorithm not only
performs well but also scales effectively.

Hybrid Approaches for Complex Problems

In complex scenarios, hybrid approaches that combine multiple data structures may be the
key to optimal solutions. By leveraging the strengths of different structures, developers can
tailor their approach to meet the specific demands of intricate problems.

In the intricate dance of algorithm design, choosing the right data structure is akin to
selecting the appropriate tool for a given task. It's a decision that requires a nuanced
understanding of the problem's nature, characteristics, and performance demands (Baddam,
2017). By embracing this strategic mindset, developers can craft algorithms that not only
solve problems effectively but also stand resilient in the face of scalability and efficiency
challenges. The art of choosing the right data structure is a foundational skill that empowers
algorithm designers to navigate the vast landscape of computational problem-solving.

DYNAMIC PROGRAMMING AND DATA STRUCTURES IN INDUSTRY

In the ever-evolving landscape of the tech industry, the marriage of Dynamic Programming
(DP) and Data Structures has proven to be a dynamic force driving innovation and
efficiency (Vadiyala & Baddam, 2017). Industries ranging from software development to
finance and beyond have embraced these powerful concepts to craft robust, scalable, and
optimized solutions to complex problems.

Software Development

Real-Time Systems: In software development, where responsiveness is paramount, the
synergy of DP and data structures finds application in real-time systems. From video
game engines to financial trading platforms, the ability to swiftly analyze and process
data using efficient algorithms rooted in DP and supported by appropriate data
structures is a game-changer.

Database Management: Efficient database management is a cornerstone of many
applications. DP techniques, coupled with data structures like B-trees and hash
tables, contribute to faster query processing and data retrieval, ensuring seamless
interactions between users and databases.

Finance and Analytics

Algorithmic Trading: In the finance industry, algorithmic trading relies on the speed and
accuracy of decision-making. DP algorithms, often complemented by sophisticated

Asian Journal of Applied Science and Engineering, Volume 7, No 1/2018 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2018 Author/(s) Page 109

data structures, enable traders to analyze market trends, optimize portfolios, and
execute trades with precision.

Risk Management: Dynamic Programming's ability to handle complex optimization
problems is invaluable in risk management. By employing suitable data structures,
financial analysts can model and assess risks, facilitating informed decision-making
and enhancing the resilience of financial systems.

Machine Learning and Artificial Intelligence

Natural Language Processing: In the realm of Natural Language Processing (NLP), DP
techniques combined with specialized data structures empower machines to
understand and generate human-like language. This synergy is fundamental to
applications such as chatbots, language translation, and sentiment analysis.

Image and Speech Recognition: Dynamic Programming, when applied to pattern
recognition problems, enhances the capabilities of image and speech recognition
systems. Combined with efficient data structures, these applications become more
accurate and responsive, paving the way for advancements in AI technologies.

The impact of Dynamic Programming and Data Structures in industry is profound,
transcending traditional boundaries. From optimizing software performance to
revolutionizing financial analytics and contributing to the rapid advancements in artificial
intelligence, their synergy is a driving force behind the innovation and efficiency we witness
in modern industries (Ballamudi, 2016). As industries continue to evolve, the strategic
integration of DP and data structures will remain a key differentiator, empowering
organizations to navigate the complexities of a data-driven world.

CONCLUSION

In conclusion, the synergy between Dynamic Programming and Data Structures is a
fascinating area of study with profound implications for algorithmic efficiency. By
understanding how these concepts complement each other, software developers and
computer scientists can elevate their problem-solving skills and contribute to more
optimized and scalable solutions in the ever-evolving field of computer science. Stable in
algorithmic problem-solving, Dynamic Programming (DP) solves complicated
computational problems elegantly and efficiently. This comprehensive examination covered
DP's core ideas, symbiotic interaction with multiple data structures, real-world applications,
optimization strategies, and obstacles. Dynamic Programming uses overlapping sub-
problems and optimal substructures to reduce wasteful computations in complex problems.
The adaptability of DP allows it to be used with arrays, linked lists, trees, graphs, and other
data structures to solve varied problems. DP has effectively solved issues in the Fibonacci
sequence and Dijkstra's graph method. Understanding DP and data structures gives
algorithmic designers a valuable arsenal. Dynamic Programming is a timeless and
transformative algorithm paradigm. When applied with experience and ingenuity, its
principles can solve complicated, large-scale challenges. As computing capabilities expand,
Dynamic Programming remains a cornerstone, enabling novel solutions and advances in
computer science.

The relationship between Dynamic Programming and Data Structures is not one of mere
collaboration but one of mutual enhancement. As we unveil the role of data structures in the
equation, it becomes evident that choosing the right structures is a strategic decision that

Vadiyala & Baddam: Exploring the Symbiosis: Dynamic Programming and its Relationship with Data Structures (101-112)

Page 110 Volume 7, No 1/2018 | AJASE

can elevate the efficiency and scalability of DP algorithms. In the dynamic landscape of
algorithm design, understanding this symbiosis is essential for crafting elegant and high-
performance solutions.

REFERENCES

Baddam, P. R. (2017). Pushing the Boundaries: Advanced Game Development in
Unity. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 29-
37. https://upright.pub/index.php/ijrstp/article/view/109

Baddam, P. R., & Kaluvakuri, S. (2016). The Power and Legacy of C Programming: A Deep
Dive into the Language. Technology & Management Review, 1, 1-
13. https://upright.pub/index.php/tmr/article/view/107

Ballamudi, V. K. R. (2016). Utilization of Machine Learning in a Responsible Manner in the
Healthcare Sector. Malaysian Journal of Medical and Biological Research, 3(2), 117-
122. https://mjmbr.my/index.php/mjmbr/article/view/677

Ballamudi, V. K. R., & Desamsetti, H. (2017). Security and Privacy in Cloud Computing:
Challenges and Opportunities. American Journal of Trade and Policy, 4(3), 129–136.
https://doi.org/10.18034/ajtp.v4i3.667

Berkowitz, N. D., Silverman, I. M., Childress, D. M., Kazan, H., Li-San, W.  (2016). A
Comprehensive Database of High-Throughput Sequencing-Based RNA Secondary
Structure Probing Data (Structure Surfer). BMC Bioinformatics, 17.
https://doi.org/10.1186/s12859-016-1071-0

Dekkati, S., & Thaduri, U. R. (2017). Innovative Method for the Prediction of Software
Defects Based on Class Imbalance Datasets. Technology & Management Review, 2, 1–5.
https://upright.pub/index.php/tmr/article/view/78

Dekkati, S., Thaduri, U. R., & Lal, K. (2016). Business Value of Digitization: Curse or
Blessing?. Global Disclosure of Economics and Business, 5(2), 133-
138. https://doi.org/10.18034/gdeb.v5i2.702

Desamsetti, H. (2016a). A Fused Homomorphic Encryption Technique to Increase Secure
Data Storage in Cloud Based Systems. The International Journal of Science &
Technoledge, 4(10), 151-155.

Desamsetti, H. (2016b). Issues with the Cloud Computing Technology. International Research
Journal of Engineering and Technology (IRJET), 3(5), 321-323.

Friedl, K., Kabódi, L. (2017).  Storing the Quantum Fourier Operator in the QuIDD Data
Structure. Acta Cybernetica, 23(2), 503-
512. https://doi.org/10.14232/actacyb.23.2.2017.5

Gaillard, J., Peytavie, A., Gesquière, G.  (2016). Data Structure for Progressive Visualisation
and Edition of Vectorial Geospatial Data. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W1, 201-
209. https://doi.org/10.5194/isprs-annals-IV-2-W1-201-2016

Goudarzi, M., Asghari, M., Boguslawski, P., Rahman, A. A. (2015).  Dual Half Edge Data
Structure in Database for Big Data in GIS. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, II(2), 41-45.
https://doi.org/10.5194/isprsannals-II-2-W2-41-2015

https://upright.pub/index.php/ijrstp/article/view/109
https://upright.pub/index.php/tmr/article/view/107
https://mjmbr.my/index.php/mjmbr/article/view/677
https://doi.org/10.18034/ajtp.v4i3.667
https://doi.org/10.1186/s12859-016-1071-0
https://upright.pub/index.php/tmr/article/view/78
https://doi.org/10.18034/gdeb.v5i2.702
https://doi.org/10.14232/actacyb.23.2.2017.5
https://doi.org/10.5194/isprs-annals-IV-2-W1-201-2016
https://doi.org/10.5194/isprsannals-II-2-W2-41-2015

Asian Journal of Applied Science and Engineering, Volume 7, No 1/2018 ISSN 2305-915X(p); 2307-9584(e)

Copyright © 2018 Author/(s) Page 111

Hung, L. N., Thu, T. N. T., Nguyen, G. C.  (2015). An Efficient Algorithm in Mining Frequent
Itemsets with Weights over Data Stream Using Tree Data Structure. International
Journal of Intelligent Systems and Applications, 7(12), 20-28.
https://doi.org/10.5815/ijisa.2015.12.02

Kaluvakuri, S., & Lal, K. (2017). Networking Alchemy: Demystifying the Magic behind
Seamless Digital Connectivity. International Journal of Reciprocal Symmetry and
Theoretical Physics, 4, 20-28. https://upright.pub/index.php/ijrstp/article/view/105

Kaluvakuri, S., & Vadiyala, V. R. (2016). Harnessing the Potential of CSS: An Exhaustive
Reference for Web Styling. Engineering International, 4(2), 95–110.
https://doi.org/10.18034/ei.v4i2.682

Lal, K. (2015). How Does Cloud Infrastructure Work?. Asia Pacific Journal of Energy and
Environment, 2(2), 61-64. https://doi.org/10.18034/apjee.v2i2.697

Lal, K. (2016). Impact of Multi-Cloud Infrastructure on Business Organizations to Use Cloud
Platforms to Fulfill Their Cloud Needs. American Journal of Trade and Policy, 3(3), 121–
126. https://doi.org/10.18034/ajtp.v3i3.663

Lal, K., & Ballamudi, V. K. R. (2017). Unlock Data’s Full Potential with Segment: A Cloud
Data Integration Approach. Technology &Amp; Management Review, 2, 6–12.
https://upright.pub/index.php/tmr/article/view/80

Laptev, V. V., Orlov, P. A., Dragunova, O. V. (2017). Visualization of Dynamic Data
Structures with Flow Charts in Web Analytics. St. Petersburg State Polytechnical
University Journal. Computer Science. Telecommunications and Control Systems, 4.
https://doi.org/10.18721/JCSTCS.10401

Li, H., Ji, Y., Luo, G., Mi, S. (2016). A Modular Structure Data Modeling Method for
Generalized Products. The International Journal of Advanced Manufacturing Technology,
84(1-4), 197-212. https://doi.org/10.1007/s00170-015-7815-6

Maddali, K., Roy, I., Sinha, K., Gupta, B., Hexmoor, H., & Kaluvakuri, S. (2018). Efficient
Any Source Capacity-Constrained Overlay Multicast in LDE-Based P2P Networks.
2018 IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS), Indore, India, 1-5. https://doi.org/10.1109/ANTS.2018.8710160

Májeková, M., Paal, T., Plowman, N. S., Bryndová, M., Kasari, L. (2016). Evaluating
Functional Diversity: Missing Trait Data and the Importance of Species Abundance
Structure and Data Transformation. PLoS One, 11(2), e0149270.
https://doi.org/10.1371/journal.pone.0149270

Mylona, A., Carr, S., Aller, P., Moraes, I., Treisman, R. (2017). A Novel Approach to Data
Collection for Difficult Structures: Data Management for Large Numbers of Crystals
with the BLEND Software. Crystals, 7(8), 242. https://doi.org/10.3390/cryst7080242

Rohn, E.  (2011). Generational Analysis of Tension and Entropy in Data Structures: Impact
on Automatic Data Integration and on the Semantic Web. Knowledge and Information
Systems, 28(1), 175-196. https://doi.org/10.1007/s10115-010-0314-z

Thaduri, U. R. (2017). Business Security Threat Overview Using IT and Business
Intelligence. Global Disclosure of Economics and Business, 6(2), 123-
132. https://doi.org/10.18034/gdeb.v6i2.703

https://doi.org/10.5815/ijisa.2015.12.02
https://upright.pub/index.php/ijrstp/article/view/105
https://doi.org/10.18034/ei.v4i2.682
https://doi.org/10.18034/apjee.v2i2.697
https://doi.org/10.18034/ajtp.v3i3.663
https://upright.pub/index.php/tmr/article/view/80
https://doi.org/10.18721/JCSTCS.10401
https://doi.org/10.1007/s00170-015-7815-6
https://doi.org/10.1109/ANTS.2018.8710160
https://doi.org/10.1371/journal.pone.0149270
https://doi.org/10.3390/cryst7080242
https://doi.org/10.1007/s10115-010-0314-z
https://doi.org/10.18034/gdeb.v6i2.703

Vadiyala & Baddam: Exploring the Symbiosis: Dynamic Programming and its Relationship with Data Structures (101-112)

Page 112 Volume 7, No 1/2018 | AJASE

Thaduri, U. R., Ballamudi, V. K. R., Dekkati, S., & Mandapuram, M. (2016). Making the
Cloud Adoption Decisions: Gaining Advantages from Taking an Integrated
Approach. International Journal of Reciprocal Symmetry and Theoretical Physics, 3, 11–16.
https://upright.pub/index.php/ijrstp/article/view/77

Vadiyala, V. R. (2017). Essential Pillars of Software Engineering: A Comprehensive
Exploration of Fundamental Concepts. ABC Research Alert, 5(3), 56–66.
https://doi.org/10.18034/ra.v5i3.655

Vadiyala, V. R., & Baddam, P. R. (2017). Mastering JavaScript’s Full Potential to Become a
Web Development Giant. Technology & Management Review, 2, 13-
24. https://upright.pub/index.php/tmr/article/view/108

Vadiyala, V. R., Baddam, P. R., & Kaluvakuri, S. (2016). Demystifying Google Cloud: A
Comprehensive Review of Cloud Computing Services. Asian Journal of Applied Science
and Engineering, 5(1), 207–218. https://doi.org/10.18034/ajase.v5i1.80

--0--

https://upright.pub/index.php/ijrstp/article/view/77
https://doi.org/10.18034/ra.v5i3.655
https://upright.pub/index.php/tmr/article/view/108
https://doi.org/10.18034/ajase.v5i1.80

