Emerging Challenges in Mechanical Systems: Leveraging Data Visualization for Predictive Maintenance
Keywords:
Abstract
This research addresses mechanical system issues and how data visualization might improve predictive maintenance (PdM). The primary goal is to examine how data visualization simplifies complicated maintenance data, improves prediction accuracy, and aids real-time decision-making. This research identifies PdM visualization trends, developments, and problems by synthesizing secondary data from academic publications, industry reports, and technical papers. Significant results show that visualization tools like real-time monitoring, AI integration, and immersive technologies like AR and VR may change PdM. These advances simplify complicated information, enable proactive maintenance, and boost mechanical system management efficiency. However, data integration, standards, and expensive implementation costs prevent wider use, especially for SMEs. The paper suggests standardization, labor training, and technology adoption incentives as governmental recommendations. Promoting PdM visualization via supporting policies would enable enterprises of all sizes to realize the full potential of predictive maintenance, boosting system dependability and operational efficiency.
References
Ali, K. M., Nidhal, R. (2018). Toward the Optimal Selective Maintenance for Multi-component Systems using Observed Failure: Applied to the FMS Study Case. The International Journal of Advanced Manufacturing Technology, 96(1-4), 1093-1107. https://doi.org/10.1007/s00170-018-1623-8 DOI: https://doi.org/10.1007/s00170-018-1623-8
Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
Ande, J. R. P. K., Varghese, A., Mallipeddi, S. R., Goda, D. R., & Yerram, S. R. (2017). Modeling and Simulation of Electromagnetic Interference in Power Distribution Networks: Implications for Grid Stability. Asia Pacific Journal of Energy and Environment, 4(2), 71-80. https://doi.org/10.18034/apjee.v4i2.720 DOI: https://doi.org/10.18034/apjee.v4i2.720
Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
Chao, O. Z., Mishani, M. B. M., Khoo, S. Y., Ismail, Z. (2019). Non-Destructive Testing and Diagnostic of Rotating Machinery Faults in Petrochemical Processing Plant. IOP Conference Series. Materials Science and Engineering, 491(1). https://doi.org/10.1088/1757-899X/491/1/012007 DOI: https://doi.org/10.1088/1757-899X/491/1/012007
Devarapu, K. (2020). Blockchain-Driven AI Solutions for Medical Imaging and Diagnosis in Healthcare. Technology & Management Review, 5, 80-91. https://upright.pub/index.php/tmr/article/view/165
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Firdaus, N., Samat, H. A., Mohamad, N. (2019). Maintenance for Energy Efficiency: A Review. IOP Conference Series. Materials Science and Engineering, 530(1). https://doi.org/10.1088/1757-899X/530/1/012047 DOI: https://doi.org/10.1088/1757-899X/530/1/012047
Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776 DOI: https://doi.org/10.18034/apjee.v6i2.776
Goda, D. R. (2020). Decentralized Financial Portfolio Management System Using Blockchain Technology. Asian Accounting and Auditing Advancement, 11(1), 87–100. https://4ajournal.com/article/view/87
Goda, D. R., Yerram, S. R., & Mallipeddi, S. R. (2018). Stochastic Optimization Models for Supply Chain Management: Integrating Uncertainty into Decision-Making Processes. Global Disclosure of Economics and Business, 7(2), 123-136. https://doi.org/10.18034/gdeb.v7i2.725 DOI: https://doi.org/10.18034/gdeb.v7i2.725
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Hoppenstedt, B., Pryss, R., Stelzer, B., Meyer-Brötz, F., Kammerer, K. (2018). Techniques and Emerging Trends for State of the Art Equipment Maintenance Systems—A Bibliometric Analysis. Applied Sciences, 8(6). https://doi.org/10.3390/app8060916 DOI: https://doi.org/10.3390/app8060916
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Kiangala, K. S., Wang, Z. (2018). Initiating Predictive Maintenance for a Conveyor Motor in A Bottling Plant Using Industry 4.0 Concepts. The International Journal of Advanced Manufacturing Technology, 97(9-12), 3251-3271. https://doi.org/10.1007/s00170-018-2093-8 DOI: https://doi.org/10.1007/s00170-018-2093-8
Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123 DOI: https://doi.org/10.18034/ajase.v8i1.123
Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672
Leahy, K., Gallagher, C., O’Donovan, P., Bruton, K., O’Sullivan, D. T. J. (2018). A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study. Energies, 11(7), 1738. https://doi.org/10.3390/en11071738 DOI: https://doi.org/10.3390/en11071738
Mallipeddi, S. R. (2019). Strategic Alignment of AI and Reciprocal Symmetry for Sustainable Competitive Advantage in the Digital Era. Technology & Management Review, 4(1), 23-35. https://upright.pub/index.php/tmr/article/view/128
Mallipeddi, S. R., & Goda, D. R. (2018). Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries: Challenges and Opportunities. Asia Pacific Journal of Energy and Environment, 5(2), 103-112. https://doi.org/10.18034/apjee.v5i2.726 DOI: https://doi.org/10.18034/apjee.v5i2.726
Mallipeddi, S. R., Goda, D. R., Yerram, S. R., Varghese, A., & Ande, J. R. P. K. (2017). Telemedicine and Beyond: Navigating the Frontier of Medical Technology. Technology & Management Review, 2, 37-50. https://upright.pub/index.php/tmr/article/view/118
Mallipeddi, S. R., Lushbough, C. M., & Gnimpieba, E. Z. (2014). Reference Integrator: a workflow for similarity driven multi-sources publication merging. The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). https://www.proquest.com/docview/1648971371
Marmo, R., Nicolella, M., Polverino, F., Tibaut, A. (2019). A Methodology for a Performance Information Model to Support Facility Management. Sustainability, 11(24), 7007. https://doi.org/10.3390/su11247007 DOI: https://doi.org/10.3390/su11247007
Metso, L., Baglee, D., Marttonen-Arola, S. (2018). Maintenance as a Combination of Intelligent IT Systems and Strategies: A Literature Review. Management and Production Engineering Review, 9(1). https://doi.org/10.24425/119400
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99
Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Surarapu, P., Ande, J. R. P. K., Varghese, A., Mallipeddi, S. R., Goda, D. R., Yerram, S. R., & Kaluvakuri, S. (2020). Quantum Dot Sensitized Solar Cells: A Promising Avenue for Next-Generation Energy Conversion. Asia Pacific Journal of Energy and Environment, 7(2), 111-120. https://doi.org/10.18034/apjee.v7i2.728 DOI: https://doi.org/10.18034/apjee.v7i2.728
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94
Vališ, D., Mazurkiewicz, D. (2018). Application of Selected Levy Processes for Degradation Modelling of Long Range Mine Belt Using Real-time Data. Archives of Civil and Mechanical Engineering, 18(4), 1430-1440. https://doi.org/10.1016/j.acme.2018.05.006 DOI: https://doi.org/10.1016/j.acme.2018.05.006
Yerram, S. R., Mallipeddi, S. R., Varghese, A., & Sandu, A. K. (2019). Human-Centered Software Development: Integrating User Experience (UX) Design and Agile Methodologies for Enhanced Product Quality. Asian Journal of Humanity, Art and Literature, 6(2), 203-218. https://doi.org/10.18034/ajhal.v6i2.732 DOI: https://doi.org/10.18034/ajhal.v6i2.732
Zhao, Y., Li, D., Dong, A., Kang, D., Lv, Q. (2017). Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data. Energies, 10(8), 1210. https://doi.org/10.3390/en10081210 DOI: https://doi.org/10.3390/en10081210
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Asian Journal of Applied Science and Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.